Silicon as an anisotropic mechanical material

a tutorial by Ville Kaajakari ville@kaajakari.net

This tutorial covers the calculation of silicon Young’s modulus and Poisson'’s ratio from elastic constants in
any crystal orientation. The algebra is the same for any elastic material with cubic symmetry but | am mostly
interested in silicon as | have used it to make micromechanical components. The tutorial assumes knowledge
of matrix algebra and some elementary mechanics concepts such as stress and strain. The material in this
tutorial is mainly based on the paper by Wortman and Evansith some concepts not familiar for a typical
engineer briefly explained.

Figure 1 below shows how Young’s modultéis defined: the bar is stretched in thairection while
simultaneously it is allowed to move freely yn andz-directions. The Young’s modulus is then defined as
the ratio of stress to strain in the direction of the stretchihg-(T11/€11). The Poisson’s ratio is defined as
ratio of length extension to sideways contraction{ —&»»2/€11). For reasons that should become obvious
later, different directions are referred with numbers and letters interchangeable.
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Figure 1. Definition of Young’s modulus Y. This tutorial uses humides and3 to indicate x, y, and z
axes respectively.

For an anisotropic material such as silicon the Young’s modulus depends on which crystal direction the
material is being stretched. Looking at Fig@¢his should be no surprise as the silicon crystal is highly
structured. Figure is also a quick introduction to the crystallographic notation: Different directions are
indicated with respect to crystal basis using Miller indexes. In cubic crystal such as silicon the [100], [010]
and [001]-directions can be chosen to coincide witly, andz-axes. However, this may not be true for
crystal with different symmetry. The Miller indexes can be thought as vectors. For example [210] would
mean two in [100]-direction and one in [010]-direction. Thus all other directions can be obtained with
combination of indexes with [101]-direction shown as an example.

To account for anisotropy tensor formalism is required. The general relationship between stress and
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Figure 2. Silicon crystal structure: Different crystal orientations are indicated with Miller indexes with
[100] coinciding with x-axis. Also shown is (100)-plane (that is plane orthogonal to [100] direction) and
crystal unit cell (red box).

strain is
3 3

Tj=> > Gixeu, (1)
K=11=1
whereCijy is the second order stiffness tensxy,is strain andTjj is stress. The subscriptisrefer to axes:
For examplély; is stress irk-direction andTy» is shear stress betwegrandy-axis.
For convenience short hand matrix notation can be used. The notation takes use of symmetry relation-

shipseio = €51, €13 = €31, andeyz = €32 between shear stresses to write-211, 22— 2, 33— 3, 32— 4,
31— 5, and 21— 6. For exampléC; 13> then become€4 andes; is simply g4. With this notation Equa-
tion (1) can be rewritten as

T Cii G2 Gz Cis Cis Cie €1
T2 Co1 G Gz Cyy Cps Cpe €
T3 | _ | Cs1 Cs2 C33 Cas Czs Czs €3 2
T4 Ca1 Ca2 Cuz Cas Cus Cue & |-
Ts Cs1 GCs2 GCsz Css Css Cse €s
| Te | | Co1 Ce2 Co3 Cesa Cos Cos | | €6 |

The main advantage of short hand notation is that we have gotten rid of the nasty tensor double sum in

Equation () and many calculations can be solved with matrix algebra. For silicon the stiffness Maitrix

[100]-crystal axes is
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where all values are in units of #¥oPa. Equation2) allows direct calculation of the Young’s modulus. To
obtain Young’s modulus in [100] direction (remember, that is alsoctt@ection), set all other stresses to
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zero and solve fov|1gq = T1/€1. This gives

Ci2
Y = —2— =1 4
100 =Cn1 Crit C12C12 30 Gpa (4)

The Poisson’s ratio can similarly be obtained as

Ci2 _
Ci11+Ci2

The values for Young's modulus to [110]- and [111]-direction #feg = 168 GPa and(;; = 187 GPa
respectively.

Unfortunately calculations can become complicated very quickly and computerized method can be de-
sirable. Since the stiffness matrix is known, the Young's modulus can be numerically computed by taking
inverse ofC. This is called compliance matri@= C~1. The compliance matrix can be used to calculate
strains due to applied stress in desired directions. If stress is apgligdction, the stresses other than
are zero. Frong = ST Young’s modulus is then simply (Why?)

Vi10g = 0.28. (5)

T

Y = . = 1/S1. (6)
1
Similarly, Poisson’s ratio is
& _ S
Vi & Si @

Compliance matrix is useful in other situations too. FigBrghows 2D stretching of a plate. In this case
Ty = T, and the other stresses are zero. This g¥ggs= T1/e1 = 181 GPa. Interestingly this does not depend
on axis orientation.
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Figure 3. 2D stretching of a silicon plate.

The Young’s modulus in any direction can be obtained by calculating the stiffness matrix in rotated
coordinates. For example, to obtain Young’s modulud irj-direction, do a 45rotation around the [001]-
axis. Once stiffness matrix is known in the new coordinates, one can follow the calculation algorithm
above. Example of axis rotation is shown in Figdreln calculating the rotated stiffness matrix, it has
the be remembered th@tis really based on a second-order tensor and that tensor rotation is slightly more
complicated than for matrix rotation. The rotat€d can be found in literaturel] but due to complex
algebra, | find it easier to calculate it numerically. The rotatéé obtained from

3

3 3 3
i/jkl = z Z z ;QpqujQersICpqrs, (8)

p=1g=1r=1
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Figure 4. Axis rotation using rotation matriQ. The new axes is obtained with= Qx
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Figure 5. Calculated silicon Young’s modulus and Poisson’s ratio in (100)-plane

whereQ is the rotation matrix. Tedious for hand calculation but a breeze for a computer.

This is all that is needed to calculate silicon Young’'s modulus and Poisson’s ratio. As an example, they
are shown in (100)-plane in Figuke You may obtain the Matlab-script used in calculating the images from
http://www.kaajakari.net/~ville/research/tutorials/Yangle.m. With the script you should be able to calculate
the Young’s modulus in other planes. (111)-plane gives an interesting result of constant Young’s modulus
and Poisson’s ratio. This makes (111) wafers an interesting material for micromachining.

I hope you enjoyed this little tutorial. | plan to improve it in the future so if you have any comments or
feedback, please send me an e-mail to ville@kaajakari.net!
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