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This tutorial covers the calculation of silicon Young’s modulus and Poisson’s ratio from elastic constants in
any crystal orientation. The algebra is the same for any elastic material with cubic symmetry but I am mostly
interested in silicon as I have used it to make micromechanical components. The tutorial assumes knowledge
of matrix algebra and some elementary mechanics concepts such as stress and strain. The material in this
tutorial is mainly based on the paper by Wortman and Evans [1] with some concepts not familiar for a typical
engineer briefly explained.

Figure1 below shows how Young’s modulusY is defined: the bar is stretched in thex-direction while
simultaneously it is allowed to move freely iny- andz-directions. The Young’s modulus is then defined as
the ratio of stress to strain in the direction of the stretching (Y = T11/ε11). The Poisson’s ratio is defined as
ratio of length extension to sideways contraction (ν = −ε22/ε11). For reasons that should become obvious
later, different directions are referred with numbers and letters interchangeable.
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Figure 1. Definition of Young’s modulus Y. This tutorial uses numbers1, 2, and3 to indicate x, y, and z
axes respectively.

For an anisotropic material such as silicon the Young’s modulus depends on which crystal direction the
material is being stretched. Looking at Figure2 this should be no surprise as the silicon crystal is highly
structured. Figure2 is also a quick introduction to the crystallographic notation: Different directions are
indicated with respect to crystal basis using Miller indexes. In cubic crystal such as silicon the [100], [010]
and [001]-directions can be chosen to coincide withx, y, andz-axes. However, this may not be true for
crystal with different symmetry. The Miller indexes can be thought as vectors. For example [210] would
mean two in [100]-direction and one in [010]-direction. Thus all other directions can be obtained with
combination of indexes with [101]-direction shown as an example.

To account for anisotropy tensor formalism is required. The general relationship between stress and
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Figure 2. Silicon crystal structure: Different crystal orientations are indicated with Miller indexes with
[100] coinciding with x-axis. Also shown is (100)-plane (that is plane orthogonal to [100] direction) and
crystal unit cell (red box).

strain is

Ti j =
3

∑
k=1

3

∑
l=1

Ci jkl εkl, (1)

whereCi jkl is the second order stiffness tensor,εkl is strain andTi j is stress. The subscriptsi j refer to axes:
For exampleT11 is stress inx-direction andT12 is shear stress betweenx-andy-axis.

For convenience short hand matrix notation can be used. The notation takes use of symmetry relation-
shipsε12 = ε21, ε13 = ε31, andε23 = ε32 between shear stresses to write 11→ 1, 22→ 2, 33→ 3, 32→ 4,
31→ 5, and 21→ 6. For exampleC1132 then becomesC14 andε32 is simplyε4. With this notation Equa-
tion (1) can be rewritten as

T1

T2

T3

T4

T5

T6

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




ε1

ε2

ε3

ε4

ε5

ε6

 . (2)

The main advantage of short hand notation is that we have gotten rid of the nasty tensor double sum in
Equation (1) and many calculations can be solved with matrix algebra. For silicon the stiffness matrixC in
[100]-crystal axes is

C =


1.66 0.64 0.64 0 0 0
0.64 1.66 0.64 0 0 0
0.64 0.64 1.66 0 0 0

0 0 0 0.80 0 0
0 0 0 0 0.80 0
0 0 0 0 0 0.80

 , (3)

where all values are in units of 1011 Pa. Equation (2) allows direct calculation of the Young’s modulus. To
obtain Young’s modulus in [100] direction (remember, that is also thex-direction), set all other stresses to
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zero and solve forY[100] = T1/ε1. This gives

Y[100] = C11−2
C12

C11+C12
C12 = 130 Gpa. (4)

The Poisson’s ratio can similarly be obtained as

ν[100] =
C12

C11+C12
= 0.28. (5)

The values for Young’s modulus to [110]- and [111]-direction areY[110] = 168 GPa andY[111] = 187 GPa
respectively.

Unfortunately calculations can become complicated very quickly and computerized method can be de-
sirable. Since the stiffness matrix is known, the Young’s modulus can be numerically computed by taking
inverse ofC. This is called compliance matrixS= C−1. The compliance matrix can be used to calculate
strains due to applied stress in desired directions. If stress is appliedx-direction, the stresses other thanT1

are zero. Fromε = ST Young’s modulus is then simply (Why?)

Y =
T1

ε1
= 1/S11. (6)

Similarly, Poisson’s ratio is

νi j =−
ε j

εi
=−

Si j

Sii
. (7)

Compliance matrix is useful in other situations too. Figure3 shows 2D stretching of a plate. In this case
T1 = T2 and the other stresses are zero. This givesY2D = T1/ε1 = 181 GPa. Interestingly this does not depend
on axis orientation.

1T

1T

2T2T

Figure 3. 2D stretching of a silicon plate.

The Young’s modulus in any direction can be obtained by calculating the stiffness matrix in rotated
coordinates. For example, to obtain Young’s modulus in[110]-direction, do a 45◦ rotation around the [001]-
axis. Once stiffness matrix is known in the new coordinates, one can follow the calculation algorithm
above. Example of axis rotation is shown in Figure4. In calculating the rotated stiffness matrix, it has
the be remembered thatC is really based on a second-order tensor and that tensor rotation is slightly more
complicated than for matrix rotation. The rotatedC′ can be found in literature [1] but due to complex
algebra, I find it easier to calculate it numerically. The rotatedC′ is obtained from

C′
i jkl =

3

∑
p=1

3

∑
q=1

3

∑
r=1

3

∑
s=1

QpiQq jQrkQslCpqrs, (8)
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Figure 4. Axis rotation using rotation matrixQ. The new axes is obtained withx′ = Qx
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(a) Young’s modulus (units: 1011 Pa)
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(b) Poisson’s ratio

Figure 5. Calculated silicon Young’s modulus and Poisson’s ratio in (100)-plane

whereQ is the rotation matrix. Tedious for hand calculation but a breeze for a computer.
This is all that is needed to calculate silicon Young’s modulus and Poisson’s ratio. As an example, they

are shown in (100)-plane in Figure5. You may obtain the Matlab-script used in calculating the images from
http://www.kaajakari.net/~ville/research/tutorials/Yangle.m. With the script you should be able to calculate
the Young’s modulus in other planes. (111)-plane gives an interesting result of constant Young’s modulus
and Poisson’s ratio. This makes (111) wafers an interesting material for micromachining.

I hope you enjoyed this little tutorial. I plan to improve it in the future so if you have any comments or
feedback, please send me an e-mail to ville@kaajakari.net!
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